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Abstract

This report presents a unified method for subsonic and supersonic jet analysis

using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was
used to obtain solutions for axisymmetric jets with on-design operating conditions at

Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and

Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This

report discusses computational methods, code implementation, computed results, and

comparisons with available experimental data. Very good agreement is shown
between the numerical solutions and available experimental data over a wide range

of operating conditions. The Navier-Stokes method using the standard Jones-Launder

two-equation k-E turbulence model can accurately predict jet flow, and such predic-
tions are made without any modification to the published constants for the turbulence

model.

Introduction

Knowledge of jet mixing aerodynamics is vital to
several areas of commercial and military aircraft design,

such as jet propulsion efficiency, propulsion integration,

aeroacoustics, and jet interference with aircraft structure.

Initial jet flow conditions are determined by nozzle exit

pressure, temperature, Mach number, and nozzle geome-

try. Once the flow leaves the jet nozzle, the jet flow
becomes a free shear layer. The action of turbulence

dominates flow developments farther downstream. As

such, jet flow properties are difficult to measure or pre-

dict analytically.

When Prandtl introduced his mixing length hypo-

thesis for turbulent flows, a brief analysis of a fully

mixed jet was given as an example. Early analyses of jet

mixing behavior were based mainly on this mixing

length hypothesis and one-dimensional momentum the-

ory. (See refs. 1--4.) Mean flow properties derived from
these analytical models compare well with experimental

measurements of jets at low subsonic speeds. However,

data from jet flow measurements in the high subsonic

and supersonic speed ranges (ref. 5) indicate signifi-

cant departure from the results obtained by using one-
dimensional momentum theory.

Jet flow contains a rich combination of flow inter-

actions and flow physics. These combinations include

turbulent mixing and compressibility effects such as

isentropic expansion and shock. Other factors may
include chemical reactions or shear layer instability.

Subsonic jet flow features are relatively simple. The
main variable in the flow is shear layer development

along the streamwise direction. The static pressure value
is almost constant with the ambient pressure. In the

absence of a pressure gradient, no significant inviscid

flow feature will appear in a subsonic jet. According to

reported experimental measurements, all turbulent axi-
symmetric subsonic jets below Mach 0.6 are similar if

the flow variables are normalized by jet density and noz-

zle exit velocity.

On the other hand, supersonic jet flow features can

be very complex. Because of the supersonic nozzle exit

Mach number, jet exit pressure can differ from ambient

pressure. This pressure difference between the jet and the
ambient fluid must be resolved locally either across an

oblique shock, by a prominent streamline curvature at the

jet boundary, or by a Mach disk inside the jet. In addi-
tion, shocks formed near the nozzle exit may reflect

repeatedly at the sonic line in the shear layer. Although
the convected turbulence interacts with shocks in the jet,

the position of the reflected shock depends on the loca-
tion of the sonic line in the turbulent shear layer. Such

interdependence of flow interactions can become very

complex.

Earlier jet flow analysis codes, with or without
chemical interactions included, were formulated with

simplified assumptions of the Navier-Stokes equations
and the turbulence model to provide the best jet flow
simulation within modest limits of computing resources

available during this time. Analytical methods and simu-
lation codes developed by this approach have been suc-

cessfully applied to problems in air-breathing engine

development, acoustics, and rocket propulsion. (See

refs. 6-12.) However, there are some drawbacks to this

approach. First, simplified assumptions are often difficult

to justify. Second, application of the simplified formula-

tions is limited to jet flow simulation. The formulations

are difficult to integrate with computational codes for air-

frame aerodynamics when performing propulsion air-

frame integration analysis. It is preferable in such cases

to perform the analysis with the three-dimensional
Navier-Stokes equations without empirical assumptions

for jet flow alone.

For general use of jet flow simulation, some basic

requirements must be met. The Navier-Stokes code

should be upwind biased to capture internal shocks and



otherjet flow discontinuities.Thecodeshouldalsobe
fully three-dimensionalin spacebecausetherelations
betweenturbulentkineticenergyandReynoldsstresses
arebasicallythree-dimensional.Theturbulencemodel
shouldbe capableof providinga time scaleanda
consistentdescriptionof theproductionandtransport
propertiesof turbulentkineticenergy.Therefore,atwo-
equationturbulenceclosuremodelisrequired.

Many upwind-biasedthree-dimensionalNavier-
Stokescodesareavailablethatmeetthejet flow simula-

tion requirement. However, the availability of codes with
a robust two-equation turbulence mode in this class is

limited. In this report, the PAB3D code is used for all jet

flow computations. The purpose of this report is to show
the feasiblity of establishing a unified method for sub-

sonic and supersonic jet analysis with a general purpose
three-dimensionai Navier-Stokes code.

The PAB3D code is developed to obtain numerical

solutions to the Reynolds averaged Navier-Stokes equa-

tions in three-dimensional spatial domain. The main
solver algorithm is the upwind Roe scheme, for which

the numerical dissipation is small. The Jones-Launder

(ref. 13) two-equation k-e turbulence closure model is

used to compute the turbulent stresses in the flow. This

approach is chosen for jet flow analysis because it is con-

sistent in tracking production and transport properties of

turbulence kinetic energy and dissipation scale length in
the shear flow. In the Jones-Launder k-e turbulence

model, several empirical constants are required. Only the

published values for these constants are implemented in

the PAB3D code. These values are fixed for all computa-
tional applications of the PAB3D code.

This report describes the mathematical formulation

of governing equations, the turbulence model, and the

adaptive grid generation algorithm, along with the

numerical implementation of each. The adaptive grid
generation algorithm is designed especially for nonaxi-

symmetric jet computations.

Several categories of jet flow computations are
described separately in the section "Results and Discus-

sion." The first category describes axisymmetric jets

operating at on-design exit conditions so that the jet exit

pressure matches the ambient static pressure. Results are
obtained for jet exit Mach numbers ranging from 0.6

to 3.0. Computed velocity and turbulence intensity distri-

butions in the jet are compared with experimental data.

The second category presents results for supersonic jets
with internal weak shocks. The discussion includes com-

puted results for jet exit pressures above and below the
ambient static pressure to show characteristics of the

shock-containing supersonic jets. Computed results are
compared with available experimental data. The third

category of computed cases is axisymmetric supersonic
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jets with embedded Mach disks. Flow conditions for

these jets are the result of a supersonic jet nozzle operat-

ing at pressures far from nozzle design value. One partic-

ular case details a Mach 1.5 nozzle operating at a nozzle

pressure ratio 3.15 times greater than the design value for

this nozzle. The last category includes supersonic jets

with nonaxisymmetric initial cross sections. Shear layer

development of these jets is very different from a typical

axisymmetric jet because of added geometrical degrees
of freedom. The development of elliptic, rectangular, and

square jets operating at the same exit pressure and Mach

number is compared.

Symbols

a

e

c2, q,

F,G,H

Fv, G v, H v

fl,f2,fn

i,j,k

J

k

Lc

ll

M

NPR

P

Pe

Po

Pt

R

local speed of sound

internal energy per unit mass

constants in two-equation turbulence
model

inviscid flux components in Navier-Stokes
equations

viscous flux components in Navier-Stokes
equations

total flux vectors (inviscid plus viscous) in

Navier-Stokes equations

monitoring function for grid adaptation

grid index in _-, rl-, G-directions

Jacobian of coordinate transformation

turbulent kinetic energy

jet potential core length

shock cell length measured from nozzle

exit to first shock intersection at jet
centerline

Mach number

nozzle pressure ratio, Pt
Po

distance in a direction normal to a solid
wall

production term for turbulent kinetic

energy

pressure

jet exit static pressure

ambient static pressure

jet total pressure

conservative variable vector in Navier-

Stokes equations

jet exit radius or area equivalent radius



S source function in Navier-Stokes

equations

T temperature

t time

U e jet exit velocity

U c jet centerline velocity

u, v, w velocity components in x-, y-, and
z-directions

u_ components of turbulence velocity
fluctuation

urn s root-mean-square value of turbulence

,2.'velocity fluctuation, _ u i

u t turbulence velocity fluctuation

W shock cell length measured from nozzle lip

to position of first shock reflection in shear

layer

x, y, z spatial coordinates

F compressibility correction factor

_/j Kronecker delta

e turbulent kinetic energy dissipation rate

kt dynamic coefficient of viscosity

v kinematic coefficient of viscosity

_, rl, _ generalized coordinate as function of x, y,
and z

p density

cE, a k constants in two-equation turbulence
model

x shear and normal stress components

Subscripts and superscripts:

e jet exit condition

k turbulent kinetic energy

L laminar quantities

o free-stream condition

T turbulence related quantities

v viscous component of flux vectors

e turbulent energy dissipation

Governing Equations

The governing equations of the Reynolds averaged
Navier-Stokes formulation include the conservation

equations for mass, momentum, and energy and the

equation of state for gas. In this study, the perfect gas law

is chosen to represent the properties of air. For a turbu-

lent flow, the Reynolds stresses can be represented by

turbulence closure models for practical applications.

Because one of the dominant factors governing jet

dynamics is turbulent shear layer mixing, the turbulence
closure model is essential for realistic jet flow simulation

when using Navier-Stokes methods. The Jones-Launder

(ref. 13) two-equation k-E turbulence model is used in

this study. The Navier-Stokes equations and the mathe-

matical representation of the two-equation turbulence

model are described briefly in separate subsections of

this report.

For computation of nonaxisymmetric jet flows, a

special requirement in grid generation arises. High grid

density is required for regions occupied by the shear

layer and the embedded shock so that high gradients of
mean flow and turbulence quantities can be accurately

represented in the numerical solution. However, the posi-
tion of the shear layer and the shock positions of a non-

axisymmetric jet are not known in advance. This special

requirement can be met by using an adaptive grid. The
analytical basis for an adaptive grid is described in the

report section "Grid Adaptation Strategy" following
discussions of Navier-Stokes equations and the Jones-

Launder k-e turbulence model.

Navier-Stokes Equations

The mass, momentum, and energy conservation

equations of the Reynolds averaged Navier-Stokes equa-

tions can be written in terms of generalized coordinates
and in a conservative form as follows:

_- _-_+_--_+_--_ : S (1)

where t, _, rl, and _ are the independent variable for time

and the ^general curvilinear coordinates in the grid
domain, Q is the conservative flow variable vector (p,

pu, pv, pw, pe) in generalized coordinates, F, (3,/2/ are

the total generalized flux vectors including inviscid and
viscous components, and the source term S is zero for the

Navier-Stokes equations in this form. This equation is

introduced here mainly to indicate the relationship

between the basic Navier-Stokes equations and the two-

equation turbulence model equations. Reference 14 pre-
sents details of the Navier-Stokes equations as applied in

the PAB3D code. A simplified form of the Navier-Stokes

equations which omits all the streamwise derivatives of

the Reynolds stresses is used in the PAB3D code. Omis-
sion of these terms is done for computational economy

and does not introduce significant computation error.

The remaining cross stream derivatives are numerically

implemented at several levels in PAB3D. The thin layer
Navier-Stokes approximation is one option for the user.

This study uses the option of uncoupled Reynolds stress
derivatives in two directions.
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Jones-Launder Two-Equation Turbulence Model

The Jones-Launder formulation for the two-equation

turbulence model uses the turbulent kinetic energy k and
the dissipation rate e as the principal variables. This

study uses the expanded three-dimensional form (ref. 15)
of the original Jones-Launder model. This modified for-

mulation is fully three-dimensional, and the governing
equations are written in a conservative form as general-

ized coordinates. The governing equations can be cast in

the same form as the Navier-Stokes equations, where

pk puk pvk pwk

Fv = g_-x Gv =
Ok

O_

_tE_

Ok
_k _y

n V =

OE

_ az

Ok

XXOx + YYOy Xzz-'_z + xyt.ay ax)

aw) r(a_+au /
+

S={s k

+t E

S k = P-p(I +F)e+L k

Here, P is the full three-dimensional production term
defined as

p:,Ta. Tar ,Taw
XX Ox + "_YY _Y + ZZ-'_z + T'xy['_yy OX )

,TCow

or is expanded to

p= r + +t,ax+

+2[(0uy IOv_ + ¢Ow yl 2_Ou av Ow]2_Lt.ax) t,az)j-SL + y +az_lJ
2 ,(Ou Ov Ow]

J

where

k 2 gT l_r
g T = Cgp_- _1.e = ilL+-- _1k = _I.L+__

lie lik

C o = 0.09

C 1 = 1.44 C 2 = 1.92 lie = 1.3 lik = 1.0

In the definitions of Se and Sk, the terms L e and L k are

near-wall effects which are not important to free jet cal-
culations, and O/On denotes derivatives in a direction

normal to the solid wall boundary. However, these terms
are included in the PAB3D code. The function F is the

compressibility correction function. Several corrections

have been developed by different authors. Among the
widely used compressibility correction functions F are

those proposed by Sarkar et al. (ref. 16) and by Wilcox
(ref. 17).

Sarkar model (ref. 16):

r = M2

Wilcox model (ref. 17):

(2)

F = (M2-M_,o)H(MT-MT, o) (3)

where H is the Heaviside function, M T = 4C_pla is

the local turbulence Mach number, a is the local speed of

sound, and MT, o is a cutoff turbulence Mach number.

The commonly accepted value MT, o = 0.25 is used in
the PAB3D code. The compressibility correction factor

is required when the local flow Mach number is greater

than 1.0. In the Sarkar model, the compressibility correc-
tion is activated everywhere in the flow field when

applied for a given computation. The Wilcox model is a

modification of the Sarkar model so that F is nonzero

only for values of M T greater than MT, o. This condi-
tion implies that compressibility correction is activated

for local flow Mach numbers near or greater than 1, with
no correction otherwise.

Grid Adaption Strategy

For an accurate representation of the flow field, suf-

ficient grid density must be provided in the mixing

region. Unlike an axisymmetric jet, the nonaxisymmetric

jet is not self-similar and can evolve in dramatically dif-
ferent fashion in different sectors of the jet cross section.

Because the position of the shear layer is not known in

advance, a large number of predetermined grid points



arerequiredto providehighdensitycoverageof the
three-dimensionalspaceif a fixedgridis usedfor the
computations.Analternativeistoprovidehighgridden-
sityintheappropriatelocationsbyusinganadaptivegrid
strategy.

Forjetplumeanalysis,highgriddensityis required
in highvelocitygradientregionsin theshearlayerand
in highpressuregradientregionsnearshockfronts.The
numberof gridpointsin eachdirectionof a structured
gridis fixed.Localgriddensitycanbevariedbyredis-
tributingtheavailablegridpointsin thecomputational
domainto matchselectedflow characteristicssuchas
pressureandvelocitygradients.Variousmethodscanbe
usedtoredistributegriddensityaccordingtogivenmulti-
ple functionalrequirements.In this study,the equi-
distributionprincipleandthe alternatedirectiongrid
adaptionmethodpublishedby Eisemanet al. (refs.15,
18,and19)arechosenasthebasisfor adaptivegrid
implementationin thePAB3Dcode.

In theequidistributionapproach,amonitoringfunc-
tion whichgovernsgrid densityoverthecomputation
domainis defined. The monitoring function can be geo-

metrically represented as a hypersurface in a space with
dimensions that are one higher than the spatial dimen-

sions of the computational domain. The process of grid

adaption begins by constructing a uniform mesh over
the monitoring surface. For a one-dimensional case, the

monitoring surface is a curve over the linear spatial

domain. Equidistribution is simply a uniform distribution

of points at equal arc distances on the entire length of the

monitoring curve. When this distribution of points is pro-

jected back to the one-dimensional baseline in the physi-

cal domain as adapted grid points, the grid density is

proportional to the gradient of the monitoring function.
For a two-dimensional grid domain, the monitoring sur-
face is a curved surface in three dimensions over the two-

dimensional physical space. The equidistribution process

involves constructing a mesh system over the curved

monitoring surface so that all the grid cells enclose

approximately equal surface areas. Once the equidistri-
bution construction is complete, the mesh pattern on the

monitoring surface is projected onto the original physical

domain. Similar to the one-dimensional case, high grid

densities are again obtained in regions where the moni-

toring function has high gradients.

If the monitoring surface is assumed to represent

mountains and valleys in a landscape, the previously

mentioned process is similar to making a contour map of

this landscape. Steep slopes in the landscape are natu-

rally represented by tightly packed contour lines on the
map, which is a horizontal projection of the original
three-dimensional surface. Visualization of the monitor-

ing surface can be difficult for a three-dimensional spa-

tial domain. However, the algebra and the geometry for

the adaption process remain unchanged. In addition to

equidistribution of arc lengths or areas on the hyper-
surface, normal curvature of the monitoring surface can

also be used as a weighting function to provide additional

mesh density control.

The alternative direction adaption proposed by Eise-

man simplifies the equidistribution procedure by per-

forming arc length equidistribution on the monitoring

surface along each family of coordinate lines. If cell

skewness remains within reasonable limits, equidistribu-

tion of all sides of the grid cells will also distribute the

cell area or volume into approximately equal sizes. How-

ever, orthogonality is not enforced in this procedure. The

degree of grid concentration for given values of the gra-

dients of a monitoring function is controlled by a propor-
tional constant. Since orthogonality is not enforced in the

alternate direction equidistribution procedure, excessive
cell skewness and cell collapse can occur if the propor-

tional constant is given too high a value.

For grid adaption to more than one flow quantity,

multiple monitoring functions can be used. A simple

approach is to combine all monitoring functions as a

single weighted sum. The approach of Eisman and

Brockelie (ref. 20) treats each monitoring function as an

additional geometrical dimension (which is orthogonal to

all previous dimensions). In this approach, grid features

represented in each monitoring function remain distinct.

The differential arc length element can be given as

ds 1 = 1 + W(So),v/1 + ]grad(f,)12 + Igrad(:2)12 + ... dso (4)

where ds 0 is the arc length in the physical or grid domain,

ds I is the arc length on the monitoring surface, grad
denotes a component of the gradient in the tangential
direction of the coordinate curves, and W(So) is an

optional weighting function which is proportional to the
curvature of the monitoring surface.

A modified approach called the sequential adaption

method is used in this paper. Assuming there are

N monitoring functions, the monitoring functions are

applied sequentially. After each step of adaption, the

mesh on the previous monitoring surface is treated as a

"stretched" uniform mesh to support the next monitoring

function. The arc length increments on each of the moni-

toring surfaces can be written as

asn = 1 + wn(sn_ 1)4/1+ Igrad(fn)12as. _ (n = 1, 2..... N)

(5)

Once the adaption process is completed over the last

monitoring function, the mesh coordinates are projected

sequentially back to all previous base surfaces. The



lastoneis thephysicalspacewhereanadaptedgridis
established.

Wherethecurvatureweightingfunctionsw 1..... wn

are zero, the sequential adaption method and the vector

monitoring function method are mathematically the

same. Only their geometrical interpretation and computa-
tional implementation are different.

Computational Methods

The simplified Reynolds averaged Navier-Stokes

equations and the Jones-Launder k-I; turbulence model

are implemented in the PAB3D code for general fluid

dynamics analysis in three-dimensional space. Distinc-

tive features of this code include provisions to accept a

multibiock grid with patched interface, compact memory

requirement, and solver options. In particular, a space-

marching solver with adaptive grid capability is available
for jet flow computation when flow conditions meet the

space-marching scheme criterion. For such cases, the

space-marching solution accuracy is indistinguishable

from accuracy obtained by using the time-marching
solver algorithm. The space-marching procedure can

complete a converged solution in approximately one-
twentieth the computer time required by the time-
marching solver to obtain a solution for the same flow
conditions.

Solver Algorithm

Three numerical schemes have been implemented in

the PAB3D code as solvers for the Navier-Stokes equa-

tions: the Van Leer flux-vector splitting scheme, the Roe

flux-difference splitting scheme, and a space-marching
scheme that is a modified version of the basic Roe

scheme. These schemes are implicit, upwind, and con-

structed by using the finite volume approach. Only the

inviscid portion of the flux vectors /_, t_, and _/ is sub-

jected to the splitting and upwind procedures. The diffu-

sion terms of the Navier-Stokes equations are centrally

differenced. Reference 14 details mathematical descrip-
tion of these schemes.

The flux-vector scheme and the flux-difference split-

ring scheme are used in all three computational direc-

tions. An updated solution at each iteration is obtained by

using an implicit procedure in the mesh rl,_-planes at
constant values of _ and a relaxation procedure in the

k-direction consisting of a forward and a backward

sweep. This particular implementation strategy has an

advantage for computational efficiency. Since the met-

tics for the implicit procedure are required for only up to

three planes, the metric constants are recomputed one

plane at a time at the advancing front of the prevalent
sweep direction instead of being stored for the entire grid

domain. Moderate or large mesh sizes require an average

of only 22 words of memory for each gird point. This

highly efficient use of computer memory is obtained at a

modest cost of approximately a 3-percent increase in

computer time per iteration. The overall computer time

requirement per iteration per grid point is similar to other

codes of this type.

For time-marching solutions using the Van Leer or
the Roe scheme, each iteration count consists of either a

forward or a backward sweep in the _-direction with one

step of implicit update of the solution in each of the cross

planes. The inviscid terms in the Navier-Stokes equa-
tions in the Roe scheme are cast in the form of an

approximate Riemann problem. The interface flux in the

streamwise direction is determined by separate terms,
depending on the quantities on the left (upstream) and the

right (downstream) sides of the interface. For a fully

supersonic flow, the information can travel only in the

flow direction. Such information is carried by the terms

representing upstream dependence. The terms which

carry the downstream dependence can be ignored with-
out introducing significant flow solution error. This state
of information transfer in the Roe scheme solver is true

for a broad category of subsonic and supersonic jet flows

where the streamwise pressure gradient is small. By
ignoring the downstream dependence terms in the Roe

scheme, the solver becomes the space-marching scheme.

Under this modified scheme, a solution is obtained plane

by plane from upstream to downstream by carrying out a

sufficient number of implicit iterations in each plane

until the convergence criterion is met. A solution for the

entire computational domain is established in a single
forward sweep.

The k-E Turbulence Model

The governing equations of the Jones-Launder for-

mulation of the k-e turbulence model are written as a pair

of coupled transport equations in conservative form. In

principle, this pair can be implemented together with the

Navier-Stokes equations as either a set of seven coupled

equations or a separate pair uncoupled from the Navier-

Stokes equations. The fully coupled approach would

cause serious problems such as a significant increase in

computational effort and working space in the computer

memory and numerical stiffness of the coupled set of
seven equations. In the PAB3D code, solutions of the k

and e equations are decoupled from the Navier-Stokes

equations and from each other. Time step differences

remain in this uncoupled system of flow and turbulence

equations. However, the problem is circumvented by
solving these k and e equations with a CFL (Courant,

Fredricks, and Levy) number that is smaller by at least
a factor of 2. The potential difference in timewise devel-
opment of the flow variables and turbulence variables
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hasnotledtoanynoticeableeffectineithertheoverall
convergencerateorthequalityof thesolutions.

Multibloek Structure and Boundary Conditions

The PAB3D code is designed to handle complex

configurations by using several types of multizone,

multiblock grid topologies. A restricted option, which is
suitable for jet plume calculation with the space-

marching schemes, calls for streamwise division of the

computational domain into zones in the _-direction. The

grid space in each zone can further be divided into blocks

in the _1- and _-directions. Otherwise, the code supports a

general multiblock scheme where the computational
domain can be divided into any collection of blocks.

Number of blocks, block size, and parametric orientation

are not restricted. The concept of zones is not relevant in

this general scheme. General patched block interface

communication is allowed. The only restriction for this

general multiblock connectivity scheme is that the con-

nected block interfaces are contiguous. A grid partition
feature is available in the PAB3D code for the conve-

nience of turbulence modeling. If different viscous stress

models are employed within a block, the k-direction of

the block can be partitioned by choosing a starting index
for each viscous stress model.

The boundary conditions often used for jet computa-

tions include inflow, outflow, free stream, solid walls,

and geometrical symmetry. Three types of inflow bound-

ary conditions are provided: Riemannian characteristics,

fixed total temperature and total pressure, and a com-

pletely fixed set of five flow parameters. Two outflow
boundary conditions are needed: constant pressure for

subsonic flows and extrapolation for supersonic flows.

The Riemannian characteristics boundary condition is
used at free stream boundaries. On a solid boundary,

either a no-slip or an inviscid-slip boundary condition

can be specified. Finally, the symmetry boundary condi-

tions include mirror imaging across a plane in any orien-

tation and polar symmetry around an axis in the
streamwise direction.

In addition, a universal high-order symmetry bound-

ary condition for Navier-Stokes code applications is

developed in the course of this jet plume study. This uni-

versal symmetry boundary condition provides a simple

method for the user to specify a symmetry boundary con-

dition at a grid plane not aligned to a surface with a con-

stant physical coordinate value. Reference 14 details this

boundary condition.

Adaptive Grid Algorithm in the PAB3D Code

For nonaxisymmetric jet calculations in this report,

one quarter of the jet cross section is represented in the

grid domain. Hence, flow symmetry across both the hori-

zontal and the vertical axis is assumed. In each plane, the

grid is divided into two parts: a high density grid in the

near field of the jet flow and a low density grid for the far

field. Only the high density grid near the jet flow is

adapted to the flow solution. A Cartesian topology is
chosen for the initial unadapted high density grid. Grid

adaption proceeds from plane to plane in the streamwise

direction. Two monitoring functions are used for adapt-

ing the grid to the velocity and pressure gradients of the

flow solution. The monitoring functions are normalized
so that one constant is used for each function to control

the intensity of adaption. (See ref. 21 .) A single grid was
used in reference 21 to cover both the near field and the

far field. A third monitoring function was employed to
redistribute a uniform Cartesian grid to form a dense grid

zone in the near field and a sparse grid distribution in the
far field.

The adaptive grid procedure is coupled to the space-

marching solver in PAB3D. Grid indices i, j, and k are
assigned to the _, rl, and _ coordinates of the generalized

coordinates. In the space-marching algorithm, a numeri-

cally converged solution is computed at each j, k-plane
through multiple iterations. This solution is then coupled

to the next plane downstream, and the computational

process is repeated.

For jet flow computations considered in this report,
initial conditions for the first plane representing the flow

condition at the nozzle exit are prescribed according to

known nozzle operating conditions. The initial grid at the

first plane is generated externally according to the initial
flow conditions by using the same grid adaption proce-

dure as the one implemented in the PAB3D code. Once

the solution process is started, grid adaptions for subse-

quent grid planes are computed within the code. A grid is
created for the (i + 1)-plane by adapting the grid to the

numerically converged solution in the/-plane. The adap-

tive grid procedure is implemented as efficiently

as possible to match the high efficiency of the space-

marching solver. The computational efficiency of this

multiple function grid adaption procedure is analyzed

during this study. The time taken for grid adaption is

approximately 4 percent of the total time required for the

flow solver. Only 1 cycle of adaption is used for each

plane. The flow solution at each plane normally takes

approximately 20 to 30 iterations before nominal conver-

gence criterion is met.

Results and Discussion

Results of jet flow computations are presented

in several groups: jets operating at on-design conditions,

supersonic jets containing weak shocks, supersonic jets

containing strong shocks, and nonaxisymmetric super-

sonic jets. For these groups of computation, the initial



flow conditionfor the jet is specified at the inflow

boundary of the computational grid. The internal flow

upstream of the jet nozzle is not modeled. Figure 1 shows

a sketch of the jet flow configuration and a typical com-

putational grid for on-design axisymmetrical jets.

On-design operation of a jet is defined as the condi-

tion for which the jet exit static pressure is identical to

the ambient static pressure. For a subsonic jet, the exit

static pressure is naturally adjusted to the ambient static

pressure. A supersonic jet flow is established by using a
convergent-divergent nozzle designed for a fixed Mach

number. The on-design nozzle pressure ratio (NPR),

defined as P/Po, is a fixed value for each given Mach

number. For jets operating at on-design NPR, pressure
gradients are very small in the entire flow domain.

Shocks in the flow domain are typically weak or absent

in on-design supersonic jets. The principal driving mech-

anism for on-design jet plume development is turbulent

mixing in the jet shear layer. This report computes on-

design jet flows by using the space-marching scheme in
PAB3D.

At off-design operating conditions, the initial jet
flow condition is either overexpanded or underexpanded.

Shock waves will appear in the jet flow. For a given noz-

zle geometry, the exit jet Mach number is fixed regard-

less of NPR (assuming that the NPR is high enough to
fully establish supersonic flow at the nozzle exit). At

NPR values sufficiently close to the design point, only
weak shocks are present in the jet flow and jet flow

development can be computed using the space-marching
solver in PAB3D.

Once strong shocks in the form of Mach disks appear
in the jet plume, the flow downstream of the shock

becomes subsonic. Furthermore, high static pressure

immediately downstream of the shock leads to rapid
acceleration and expansion of the subsonic flow. Hence,

a strong pressure gradient exists. The time-marching
solvers in the PAB3D code must then be used because

conditions permitting the use of the space-marching

scheme are violated in this region. However, the space-
marching method alone cannot detect the occurrence of a

Mach disk. The decision to use either the space-marching

or time-marching options in the PAB3D code for a par-
ticular case must be guided by tabulated experimental

data or by theoretical estimates. Reference 5 gives an

excellent reference for Mach disk formation in axisym-
metric jet plumes.

Jet exhaust nozzles of practical interest in propulsion

systems may have a nonaxisymmetric exit cross section.

The dynamic characteristics of nonaxisymmetric jets are

significantly more complex than those for axisymmetric

jets because of the added degrees of freedom in jet flow

geometry. The adaptive grid option in the PAB3D code

is used to provide appropriate grid density distribution

for the shear layer and shock regions in the jet flow. The

following subsections give detailed discussions of results

in each group of jet flow computations.

On-Design Circular Jet Plumes

Flow solutions for on-design circular jets within jet

exit Mach numbers ranging from 0.6 to 3.0 are computed
using the space-marching method in the PAB3D code. In

this series of jet flow simulations, the initial flow condi-

tion for the jet plume is specified at the inflow boundary

of the computational domain. A small velocity compo-
nent in the ambient air parallel to the jet flow direction is

required in the PAB3D code for maintaining numerical
stability of the space-marching scheme. A frccstream

Mach number of 0.001 is sufficient in fulfilling this
numerical requirement.

The on-design jet grid is constructed as a single layer
wedge which covers a sector of 2.5 ° in the circumferen-

tial direction. Figure 1 shows general layout of this grid.
There are 400 uniformly sized grid cells in the stream-
wise direction covering a distance of x/R = 40 and 48

grid cells in the transverse direction covering a radial dis-

tance of y/R = 8. At the inflow station of the jet, the jet

plume is defined by 18 grid cells, and the remaining 30

grid cells cover the distance from y/R = 1.0 to 8.0. The

initial shear layer region near the nozzle exit plane is
covered by 24 grid cells centered above and below the

nozzle lip. High grid density is provided in the shear

layer to capture the turbulent mixing process. As the jet

flow spreads downstream, approximately 30 grid cells

are located within the jet flow. For computational conve-
nience, the grid domain is divided into four blocks in the

streamwise direction. The grid domain can easily be

extended in the streamwise direction by adding more
blocks.

General features of jet flow computation using the
PAB3D code with the two-equation k-t; turbulence clo-

sure model are illustrated by the solutions of a typical

subsonic jet at M = 0.6. Compressibility correction for
the k-e turbulence model is not needed in this com-

putation. Figure 2 shows the computed centerline veloc-

ity profile for the M = 0.6 jet. The centerline velocity

maintains its exit value for a distance up to approxi-
mately xlR = 12 and decreases farther downstream as a

result of turbulence mixing. The classical relation of
velocity decay is given by

Uc(X) L c
- (6)

U e x

where L c is the intercept of the X -1 decay curve and hori-

zontal line uc(x)lU e = 1.0 (referred to as the potential



corelengthin jet flow literature).Figure2 showsboth
thecomputedcenterlinevelocityprofileandtheclassical
velocitydecayasindicatedbyequation(6).Goodagree-
mentis shownbetweenthePAB3Dsolutionandthe
resultobtainedwithequation(6).

Figure2alsoshowsthecomputedcenterlinevelocity
profilesforaMach2.0jetoperatingon-designusingthe
Jones-Launderk-E turbulence model with three different

methods of compressibility corrections. The compress-

ibility correction factor in the k-_ turbulence model has a

strong influence on jet flow development. Turbulence

mixing is strongest in the jet flow when no compressibil-

ity correction is applied. For this case, the potential core

length is LclR = 17.2. The action of turbulence mixing in
the jet is weaker when compressibility corrections are

applied. The value of Lc/R is 22.6 and 25.2 for the Sarkar

and the Wilcox methods, respectively. The velocity

decay downstream of the end of the potential core is also

computed according to equation (6) and the value of LclR
for each case. The results are shown in figure 2.

Good agreement is observed between the PAB3D

solutions using the Sarkar and the Wilcox corrections

and their corresponding results using equation (6) for

uc/U e greater than 0.7. For uclU e less than 0.7, the

PAB3D solution begins to deviate from the classical 1/x

decay rate. For the solution without compressibility cor-
rection, the decay rate starts to deviate from the 1/x decay

at approximately uclU e = 0.8. Without compressibility

correction in the k-e turbulence model, the predicted tur-

bulence level is too high for the Mach 2.0 supersonic jet

solution. This steep velocity decay is an indication of

excess mixing in the jet shear layer.

Figure 3 shows the downstream evolution of the
M = 0.6 jet velocity cross section. At x/R = 0, the initial

velocity profile across the entire width of the jet nozzle

exit has a prescribed constant value of U e. The cross sec-

tion at xlR = 5 (fig. 3) shows the initial development of a
thin shear layer, and the width of the potential core is

narrower than its width at the jet exit. The cross section

at x/R = 15 is located just downstream of the end of the

potential core. The velocity profile at xlR = 15 has not

yet attained a Gaussian distribution. However, the Gauss-
ian velocity distribution has been established at x/R = 25.

Figure 4 shows the turbulence intensity distributions at

the corresponding x/R stations. The peaks of the turbu-

lence intensity distributions at x/R = 5 and 15 are located
in the middle of the shear layer where the velocity gradi-

ent is the highest. Although the centerline turbulence

level at x/R = 25 is significantly higher, the peak turbu-

lence intensity remains off center, and the turbulence

intensity distribution across the jet is not Gaussian.

According to measured data by Wygnanski and Fiedler

(ref. 22), self similarity of the turbulence intensity is usu-

ally established at x/R values between 50 and 70.

Figure 5 shows computed centerline velocity profiles

for a M = 2.22 jet and the experimental data measured by

Eggers. (See ref. 23.) Like the centerline velocity profiles

for a Mach 2.0 jet shown in figure 2, the solutions

obtained by using different compressibility corrections

are different. With no compressibility correction, the

potential core length is underpredicted. The location of

the end of the potential core appears to agree with the
centerline velocity profile predicted using the Wilcox

model. However, centerline velocity computed by using

equation (6) and the potential core length of the Sarkar

solution Lc/R = 27.15 agrees very well with the data
obtained farther downstream. (See ref. 23.) The agree-

ment between computational and measured data is much

better when compressibility corrections are applied,

although a small difference exists between the Sarkar
model and the Wilcox solutions. Figure 6 shows the cor-

responding results of velocity distributions in the jet
cross section at x/R=25. The importance of

compressibility correction for supersonic jets is further

illustrated here, as the compressibility-corrected compu-

tations come very close to the measured data, whereas

the uncorrected computation underpredicts the centerline

velocity by nearly 40 percent.

A group of on-design jet plumes with exit Mach
numbers ranging from 0.6 to 3.0 is computed to illustrate

the trend of turbulent mixing as a function of Mach num-

ber. Figure 7 shows typical turbulence intensity distribu-

tions utlU e in the longitudinal plane of symmetry of the
jet at three different Mach numbers: 0.8, 1.2, and 1.6.

The contours in figure 7 show that turbulence is absent in

the potential core region. Intense levels of turbulence

start to develop at the lip of the jet nozzle exit. The posi-
tion of the maximum turbulence intensity in the initial

zone of the shear layer occurs near the lip line of the jet.

As the shear layer evolves farther downstream, the posi-
tion of maximum turbulence intensity migrates towards

the jet centerline. This general pattern remains the same
for all on-design circular jets computed within the Mach

number range from 0.6 to 3.0. The length of the potential

core and the value of maximum turbulence intensity vary

as a function of Mach number. Figure 8 summarizes the

computed turbulence intensity distributions along the jet
centerline as a function of Mach number. The Wilcox

compressibility correction is used for these computations
because the definition of the Wilcox correction provides

a consistent blending of compressibility correction for

subsonic and supersonic flow regions.

The potential core length is usually defined as the

distance from the jet exit to the beginning of centerline

velocity decay. An important equation for potential core



lengthasafunctionofjetMachnumberisgivenbyLau,
Morris,andFisherin reference24as:

Z C

= 8.4+2.2M 2 (7)

Core length is obtained by an empirical curve fit to a

large collection of measured values for potential core

length in subsonic and supersonic jets.

Figure 9 shows the potential core lengths computed

with the standard Jones-Launder two-equation k-e turbu-

lence model with the Sarkar and the Wilcox compress-

ibility corrections. The core length is defined as the point

where the value of the centerline jet velocity has dropped
to 0.99 times the jet exit velocity. The potential core

length derived with the Wilcox compressibility correc-

tion is higher than the value computed in equation (7) for

the entire Mach number range. Values obtained by using
the Sarkar compressibility correction are higher than the

Wilcox results. However, the trends of core length varia-
tion as a function of Mach number are similar in all three

sets of results. An alternate value of the potential core

lengths can be obtained from the computed jet flow solu-
tion when the end of potential core in the jet flow is

defined as the point where turbulence intensity level
exceeds a threshold of Urn s = 0.01 along the jet center-

line. The core lengths obtained by the turbulence inten-

sity definition (also shown in fig. 9) agree very well with

the values obtained with the velocity decay criterion.

The difference between the computed and the empir-
ical curve fit formula based on measured values origi-

nates from several sources. In the work by Lau, Morris,
and Fisher, the experimental database contains measured

potential core length values for jets operating at different
temperatures. Equation (7) is a curve fit for isothermal

jets where the jet static temperature is the same as the

ambient temperature, whereas the jet total temperature is

higher than the ambient total temperature. Many data

points for cold jets, where the jet total temperature is the

same as the ambient air temperature and therefore the jet

static temperature is colder than the ambient temperature,

are above the curve fit of equation (7). In this report, the
jet flows are computed as cold jets.

A second source of discrepancy may come from

modeling boundary conditions in the computations. For

jet flows in the laboratory, the boundary layer within the
jet nozzle has a finite thickness at the nozzle exit. The
initial turbulence level and the thickness of the nozzle

boundary layer give the jet mixing layer an earlier start in

its development. Therefore, the computed core length
will be shorter if the initial boundary layer at the jet noz-

zle exit is included in the computations. In addition to

these circumstances, grid density and accuracy of turbu-
lence modeling are important factors to be considered for
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further refinements of the computational method for jet
flow predictions.

It is significant that the mean flow and turbulence

levels of on-design circular jet plumes are predicted over

such a wide range of Mach numbers by using the stan-
dard Jones-Launder k-e turbulence model and the Wilcox

compressibility correction without changing the pub-
lished constants for the turbulence model. In a broader

context, the modeling of jet plumes is often required in

propulsion and airframe integration. A consistent compu-

tational analysis for such jet plume modeling using the

Navier-Stokes method should not permit ad hoc changes

to the turbulence model. The results of this parametric
investigation indicate that ad hoc modifications to the

standard Jones-Launder turbulence model are not needed

for jet flow analysis.

Off-Design Jets Containing Weak Shocks

This section shows the flow properties of a Mach 2

jet containing weak shocks using solutions obtained

within a limited range of nozzle pressure ratios. The
space-marching solver procedure in the PAB3D code is

used to compute these jet flows. At Mach 2, the jet flow
is free from Mach disk formation for values of NPR

between 4.6 and 13.8, which correspond to a ratio of jet

exit to ambient pressure pe/Po between 0.6 and 1.8. Fig-
ure 10 shows a density contour for a typical under-

expanded jet. At the jet exit, a curved shock near the lip
line of the jet nozzle is formed to resolve the pressure
difference between the ambient flow and the flow inside

the jet. An internal weak shock system which reflects

repeatedly between the shear layer and the jet centerline
also exists in the jet.

Figure 11 shows the computed pressure distribution

along the jet axis for pe/Po = 0.8, 1.2, 1.4, 1.6, and 1.8.
Only one overexpanded case is included in this collection

(pe/Po=0.8). The pressure distribution of the over-

expanded jet is characterized by a sharp shock front and
pressure peak close to the jet exit. This feature is not

found in underexpanded jets. Beginning with the second

peak, the features of overexpanded jet pressure oscilla-
tions on the jet centerline follow the same trend as the

patterns shown for underexpanded jets. For the under-

expanded jets, the cycle of pressure oscillation begins

with a smooth expansion. The flow is then recompressed

towards the first pressure peak in two stages. The pres-
sure rises sharply about halfway then recompresses grad-

ually the rest of the way. Although not shown in

the figure, expansion and recompression processes are
smooth for subsequent periods of oscillation. Refer-

ence 25 gives further discussion of the centerline pres-
sure distributions of off-design jet flows at Mach 2.



Extensiveflowvisualizationmeasurementsofsuper-
sonicjetsatoff-designconditionswereobtainedbyLove
etal.(Seeref.5.)Shockformationin thejet flowischar-
acterizedbytwolengths:11, the distance from the jet exit

to the first shock intersection with the jet centerline; and

W, the distance from the jet exit to the first shock inter-

section with the sonic line in the shear layer. Figure 10

shows definitions of these lengths. Figure 12 shows the

computed values and measured values of Il and W

(ref. 5) for several overexpanded and underexpanded val-

ues of NPR. Excellent agreement is demonstrated by the

results in figure 12.

Figure 13 details computed centerline pressure dis-

tributions and experimental data for a Mach 2.0 jet

at pelpo=l.445 (NPR=I1.3). Three solutions are
obtained by using the basic k-e turbulence model with no

compressibility correction, the Sarkar correction, and the
Wilcox correction. The solution without compressibility

correction shows that the amplitude of pressure oscilla-

tions diminishes rapidly downstream and predicted

wavelength is much shorter than the experimental data in
the downstream region of the jet. The solutions obtained

with a compressibility-corrected k-e turbulence model
show excellent agreement with measured data. Differ-
ences between the Sarkar and Wilcox corrections are

small. The amplitudes of the computed solutions closely
follow the test data, but their phase relations with re-

spect to the measured data are somewhat different.
At xlR = 40, the Wilcox solution leads the measured data

by approximately one sixth of one period, whereas the

Sarkar solution lags behind the measurements by approx-

imately half that amount. All three solutions are very

similar near the jet exit. However, the amplitude of the

first pressure peak near the jet exit is underpredicted by

approximately 15 percent.

Figure 14 shows the computed values for the axial

turbulence velocity component and the measured data

obtained by Seiner, Dash, and Wolf (ref. 26). The inter-
action between the repeated shock-cell structure and the

turbulence produces a significant periodic modulation of

the axial turbulence velocity component. The magnitude

of the fluctuation is in phase with the pressure fluctuation

in the jet. (See fig. 13.) Good agreement in both phase
and amplitude is seen between the computed solutions

and the measured data. The compressibility-corrected

solutions provide better agreement with the measure-
ments than the uncorrected solution. It is encouraging to

find from this comparison that the standard Jones-Laun-

der k-e model is capable of accurate predictions of the
turbulence velocity in a shock-containing supersonic jet.

For practical applications such as jet noise prediction, an
estimate of turbulence intensity in the jet flow is needed.

A computational capability for predicting turbulence

intensity distributions in the jet flow is highly desirable

because measurement of turbulence in high speed flow is

exceedingly difficult.

Better predictions of the turbulent velocity fluctua-

tions in a supersonic jet can be obtained with further

improvement of the turbulence model. In standard k-e
turbulence models, the local turbulence kinetic energy is

attributed equally to all three turbulence velocity compo-

nents. However, it is known that the magnitude of the

axial component is higher than those of the transverse

components in the jet shear layer. Therefore, a better
redistribution relationship of the turbulent kinetic energy

and the Reynolds stress tensor components would raise

the value of the computed utlU e. Furthermore, the mod-
ulation of the axial turbulence velocity component by the

internal shock waves would be stronger, since the ampli-

tude of shock turbulence interaction is roughly propor-

tional to the shock strength and the magnitude of the

axial component of the velocity fluctuations.

Use of the space-marching algorithm to obtain a jet

flow solution requires less than 100 seconds of CPU time

on the Cray Y-MP computer at the Langley Research

Center. Use of the time-marching solver to obtain a con-

verged solution for the same cases typically requires
2000 seconds of CPU time. The ratio of computer time

required when using the time-marching solver increases

by a factor of 20. Figure 15 presents jet centerline pres-
sure distributions obtained by using the space-marching

and time-marching solvers. The flow solutions obtained

by these two different procedures are practically the
same. Detailed discussion of this comparison can be
found in reference 27.

Off-Design Supersonic Jets Containing a Mach
Disk

Mach disks may appear in a supersonic jet if the

operating NPR is significantly different from NPR
design value. The conditions for Mach disk formation for

a given nozzle depend on nozzle design Mach number

and details of the nozzle geometry, such as the nozzle

wall exit angle. Mach disk formation can occur in both

overexpanded and underexpanded conditions. For a

Mach 2.0 nozzle with on-design NPR of 7.82, Mach disk

appears if the operating NPR is less than 4.6 or greater
than 13.8. For a nozzle with M = 1.5 with an on-design

NPR value of 3.67, a Mach disk will form in the jet for

NPR less than 2.7 or greater than 6.1.

For jet flow computations where Mach disk forma-

tion is expected, the time-marching solver in the PAB3D
code is used. A different computational grid is also

required. When the case of a Mach disk containing jet

flow is originally computed with the on-design jet grid,
the Mach disk is never formed in the converged solution.

The shock front initiated at the nozzle exit propagates as
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a weakshockall the way to the jet centerline and then

continues as a regular reflected weak shock. In the

on-design grid, the cell streamwise versus radial aspect

ratio is 4. Although the PAB3D code solver is designed
as an upwind algorithm, certain numerical errors in the

transonic regime prevent the proper formation of a Mach

disk in the flow solution. Because general patched grid
capability is available in the PAB3D code, a new grid is

created so that the grid for x/R from 0 to 2 has a grid dis-

tribution similar to the on-design jet grid but with double

the density in each direction. For x/R from 2 to 10, a
uniformly sized grid distribution is retained in the

streamwise direction. In the radial direction, a uniform
grid distribution is provided for ylR from 0 to 2 so that

cell aspect ratio in the entire region is 1.0. An exponen-
tially expanding grid is used for ylR from 2 to 8 to cover

the free-stream domain outside the jet flow. Figure 16

shows a sketch of this revised grid. The overall grid

domain is divided into four blocks for computational

convenience. The correct Mach disk containing solution
is obtained by using this revised grid.

A solution for a Mach 1.5 jet operating at

NPR = 11.6 (Pelpo = 3.15) is obtained. Figure 17 shows

the density and Mach number distributions in the jet. A
well-formed Mach disk is located at x/R = 4.4. The

radius of the Mach disk is approximately 0.68R in the

computed solution. The location of this Mach disk agrees
with the measurements given in reference 5. However,
the computed radius of the Mach disk is smaller than the

corresponding measured value. The reflected weak shock

and a slip line initiated at the outer edge of the Mach disk

is clearly shown by the computed density contours. The

contour value indicates that the Mach number upstream

of the Mach disk has accelerated to values greater
than 4.0, whereas the Mach number downstream of the
first Mach disk is reduced to values below 0.2. Down-

sa'eam of the first Mach disk, the flow near the centerline

again accelerates to supersonic speeds near x/R = 8.0. A
second Mach disk is subsequently formed at xlR = 8.6.
Though much weaker, the second Mach disk can be seen

in a schlieren photograph for a jet operating at nearly the
same jet initial conditions. (See ref. 5.)

Since the time-marching computations for the Mach

disk case are executed by using grid sequencing, con-

verged solutions at three grid levels are obtained during
the process. Figure 18 shows the Mach number contours

using the one-fourth and one-half linear grid density in

the j- and k-directions. Even at the quarter density grid
level, the first Mach disk is captured in the solution. Both
the location and the radius of this Mach disk are estab-

lished in this coarse grid. In the half density grid, the sec-
ond Mach disk emerges in the solution. Only minor
changes in the flow physics are detectable between the
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half density grid solution and the full density grid solu-
tion, as shown earlier in figure 17.

Adaptive Grid Computations of
Nonaxisymmetric Jets

For jet flow computations using an adaptive grid, a

quarter plane symmetry for the jet is assumed. The grid is

divided into two domains: a high grid density inner
domain near the jet flow, and an outer domain with

reduced grid density to cover the free-stream domain

away from the jet flow. A Cartesian grid topology is used

in the inner domain to accommodate a wide range of jet

exit geometries. The outer domain has a polar topology
with significantly less grid density than the inner domain.
Figure 19 shows a sketch of the grid cross section. Refer-

ence 28 shows that the computational simulation of a cir-

cular jet remains perfectly axisymmetric even though the

grid is Cartesian. Furthermore, the adaptive grid proce-

dure provides adequate grid densities to support accurate

computations in the jet shear layer and in regions near a
shock front.

This section discusses computed solutions for an

elliptic, a rectangular, and a square jet using the adaptive
grid method. The elliptic jet is known for its unusual

mixing characteristics. The rectangular jet family, which

includes the square jet as a special case, is widely used

for propulsion integration in advanced aircraft systems.

Both elliptic and rectangular jets are capable of switching
their major and minor axis directions in different cross

sections along the jet. An initial Mach number of 2.0 and

an operating NPR of 11.31 are chosen for all three con-

figurations. The operating NPR corresponds to an exit

static pressure ratio of pe/Po = 1.445. In addition, the

Mach 2 elliptic jet is also computed at its on-design flow
condition at NPR = 7.82.

Figure 20 shows the computed Mach number con-

tours for the underexpanded elliptic jet in the major and
the minor planes of symmetry. The elliptic cross section

at the nozzle exit plane has an aspect ratio of 2.0. The

shock fronts are clearly defined by the Mach number

contours in the major plane of symmetry. The shock

reflection pattern in the core region of the jet is quite reg-
ular. In the plane containing the minor axis, the shock is

initially reflected in the shear layer with a scale propor-
tional to the minor axis length. However, the short wave

pattern quickly disappears at approximately xlR = 6. Far-

ther downstream in the jet, only the long wave pattern
dominated by the length scale of the major axis remains.

Another unique feature in figure 20 is the expansion rate

of the outer jet boundary. In the plane containing the

major axis, the jet boundary expands slowly in the radial

direction. In contrast, the jet boundary in the plane
containing the minor axis expands rapidly in the radial



direction.By approximatelyx/R = 15, the width of the

elliptic jet in the original minor axis direction has

exceeded the jet width in the original major axis direc-

tion. Hence, this computation indicates an axis switching

phenomenon for a supersonic elliptic jet.

When using similarity analysis, the major and the
minor axes of the initial cross section are considered two

independent reference scale lengths for the jet flow. A

simple consequence of assuming two independent refer-
ence scales would be that the internal shock reflection

pattern would repeat in two directions along two differ-
ent scales. On the other hand, the difference between

these two scales must be resolved within the jet flow to a
common scale since shock fronts cannot cross each other

without some type of interaction. The computed result

demonstrates the complexity of such aerodynamic inter-

actions. In the plane of symmetry containing the minor

axis, the internal shock wave length is initially governed

by the minor axis scale. However, the shear layer posi-

tion expands rapidly outward in the minor plane of sym-

metry; thus, the reflection length scale of the downstream
shock wave pattern is changed. In the major plane of

symmetry, the width of the jet in this plane remains

approximately constant; thus, the reference scale of the

jet in the minor axis direction is allowed to catch up. The

nonlinear interaction within the jet flow eventually leads

to a unified scale length for the shock cell system.

Figure 21 shows the Mach number contours in an

on-design elliptic jet at Mach 2.0. In the absence of a
shock structure in the jet, the Mach number distribution

in both the major and minor planes of symmetry is

smooth and indistinguishable from the previously com-

puted Mach number distributions in circular jets. Similar

to the underexpanded elliptic jet case, the shear layer
growth in the minor plane of symmetry is faster than the

growth in the major plane of symmetry. At x/R = 40, the

widths of the jet as seen in both planes of symmetry are

almost equal. However, axis switching does not occur in

the on-design case.

In order to examine the possibility of axis switching,
cross section Mach number contours are shown for these

four jets in figures 22-25. The exit cross section aspect
ratio for the elliptic and the rectangular jet exit shapes
is 2.0. The Mach number contours in each of the

cross sections show only a narrow band from M = 0.8
to M = 1.2 with a contour interval of 0.1 to highlight the

shape of the cross section. Figure 22 shows the evolution

of the elliptic underexpanded jet cross sections. At the
exit, the major axis of the elliptic cross section is oriented

in the horizontal direction. The jet boundary grows

rapidly in the vertical direction. At x/R = 30, the major
axis of the elliptic cross section has clearly switched

to the vertical direction. The aspect ratio of the ellipse at

x/R = 30 is approximately 1.50.

Figure 23 shows the equivalent sequence for a rect-

angular jet. Jet boundary growth in the vertical direction

is even faster than that of the elliptic jet. At xlR = 30, the

aspect ratio of the shape is approximately 1.70. The cor-

ners of the original rectangular shape have been rounded

off in the process of turbulent mixing.

Figure 24 shows the evolution sequence for a square

jet. In this case, the original square shape for the Mach

number contours evolves rapidly in the jet flow. At

xlR = 12, the corners of the square are actually trans-

posed by 45 ° , with the corner sharpness well preserved.

As the shear layer grows thicker farther downstream, the

shape of the jet cross section quickly losses its distinction

as a square and eventually becomes circular.

Figure 25 shows the shape evolution sequence for an

elliptic jet with on-design exit pressure ratio. Although

the jet grows mainly in the vertical direction, axis switch-

ing does not occur in this on-design jet flow. The jet sim-
ply becomes a near-circular jet at x/R = 30. At the last

computed streamwise position at x/R = 40, the cross sec-

tions for all four jets simply retain their geometrical char-
acters similar to those established at xlR = 30.

Figure 26 shows the Mach number contours in the

plane of symmetry of the square jet and its centerline
Mach number distribution. Qualitatively, these distribu-

tions are very similar to the corresponding distributions

shown in figure 27 for a circular jet operating at the same
exit Mach number and NPR. The visually striking

dynamic behavior of the square jet axis (fig. 24) shows
that switching apparently has little influence on flow

development near the jet centerline. It should be pointed
out that the square jet and the circular jet, with a common
reference dimension of 1.0, have different jet exit areas.

In order to compare the streamwise jet flow development
on a normalized basis, the length scale for the square jet

in figure 24 should be reduced by a factor of

= 0.8862. With this scale adjustment, the phase

and amplitude of the centerline Mach number oscilla-

tions of the square jet and the circular jet agree almost

exactly starting from the second peak.

In order to provide some validation for the adaptive

grid computation procedure for nonaxisymmetric jets, a
Mach 2.0 on-design circular jet solution computed by

using the axisymmetric grid is compared with the same

jet computed by using a three-dimensional adaptive grid.

Two levels of adaptive grid densities are also used to ver-

ify grid convergence: 40 x 40 cells and 56 x 56 ceils for
the inner high density grid cross sections. Figure 28

shows the axisymmetric grid solution for M = 2.0. The

adaptive grid results are shown in figures 29 and 30.
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Nearly identical solutions for the turbulence intensity
distribution in the meridian plane and along the center-

line of the jet are obtained for the two adaptive grid

densities. For example, the maximum turbulence level in
the jet plume is 0.134 for both the 40 x 40 cell and the

56 x 56 cell solutions. The solution using an axisymmet-
ric grid differs slightly from the adaptive grid results in
two aspects. First, the maximum turbulence level in the

middle of the shear layer is slightly higher, with a value

of 0.142. Second, the turbulence intensity profile along

the centerline is shifted upstream by approximately
x/R = 2.0.

The reason for the different maximum intensity in

the shear layer is not clear. However, the spatial shift of
the turbulence intensity profile along the centerline has a

geometrical explanation. It is difficult for the grid adap-
tion algorithm to handle very large velocity gradients

such as those occurring near the jet exit. Consequently, it

is not possible to specify an initial shear layer thickness

of less than 0.05 jet radius at the jet exit plane. Since the

initial shear layer is thicker, the inner boundary of the
turbulent shear layer intersects with the centerline at a
smaller value of x/R. In fact, with a downstream shift of

the adaptive grid centerline turbulence intensity profile,

the turbulence intensity profile can be matched perfectly
with results using the axisymmetric grid.

Concluding Remarks

The main purpose of this report is to establish a uni-

fied method for jet flow prediction using the Navier-

Stokes method with a two-equation k-e turbulence clo-

sure model. Although the jet flow may contain a variety
of complex flow physics features, the Navier-Stokes

method simply requires that the initial condition and

boundary conditions of the jet operating conditions be

specified for the problem. Detailed flow physics devel-

opments in the jet are predicted by the Navier-Stokes

method. The validity of this approach is demonstrated by
the high quality jet flow solutions obtained with the
PAB3D code.

This study examines several categories of jet flow
conditions. For on-design subsonic and supersonic axi-

symmetric jets, the flow field is dominated entirely by
turbulent mixing. Numerical solutions within a Mach

number range of 0.6 to 3.0 are accurate when compared
with available experiment data for parameters such as

mean velocity and turbulence intensity distributions in

the jet, centerline velocity decay, and the potential core
length variation as a function of Mach number.

For off-design supersonic jet flows containing weak

shocks, flow predictions are compared with experimental

data. Good agreement is obtained between the computed
results and experimental data for key parameters, includ-

ing first shock-cell lengths and centerline pressure distri-
bution. The predicted distributions of the streamwise

component of turbulence velocity fluctuation in an

underexpanded Mach 2.0 jet show good agreement with
measured data.

Turbulence intensity in the jet flow is an important
quantity for jet noise prediction. Since direct measure-

ment of turbulence in a supersonic jet is very difficult to

make, a predictive capability provided by the PAB3D

code is very useful for practical applications. Good

agreement between predictions and experimental mea-

surements has also been obtained for a Mach 1.5 jet oper-
ating at 3.15 times its design nozzle pressure ratio where
Mach disks are present in the jet flow.

Many of the modem propulsion jet nozzles employ

nonaxisymmetrical exit geometries. The adaptive grid

method examined in this study has produced good results
for elliptic, rectangular, and square jets. However, the

computed results are not verified for lack of experimental
data. The accuracy of the adaptive grid procedure is illus-

trated by a comparison between an adaptive grid solution

of an axisymmetric jet and a solution for the same jet

using a single cell wedge grid. Although the adaptive

grid has a Cartesian-topology and the single-cell wedge
grid has cylindrical symmetry boundary conditions, the

solutions are essentially identical.

For most jet flows where strong shocks are absent in

the computational domain, the space-marching solver in

the PAB3D code can be used. When the space-marching
option is used for jet flow computation as conditions per-
mit, the computer time is one twentieth of the time

required for obtaining a time-marching solution with the

same flow conditions. The accuracy of the solutions

obtained by these different solvers is practically indistin-

guishable. Substantial savings in computer time can be
realized by using the space-marching method in the

PAB3D code if the analyses of many cases of jet flow
conditions are required for design applications.

NASA Langley Research Center
Hampton, VA 23681-0001
May 23, 1996
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(a) Typical on-design jet flow configuration and terminology.
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(b) Single cell wedge grid for on-design jet flow computations.

Figure 1. Sketch of typical axisymmetric on-design jet flow and computational grid.
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Figure 2. Centerline velocity decay for subsonic and supersonic jet flows computed with standard Jones-Launder k-e

turbulence model with different compressibility corrections.
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Figure 4. Turbulence intensity distribution in cross sections in Mach 0.6 circular jet flow.
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Figure 5. Centerline velocity distribution for supersonic jet using k-E turbulence model with different compressibility
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Figure 8. Centerline turbulence intensity profiles of axisymmetric jets at various subsonic and supersonic Mach num-
bers computed by using Jones-Launder two-equation k-E turbulence model with Wilcox compressibility correction.
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Figure 13. Centerline pressure distribution computed with Jones-Launder k-e model with different compressibility cor-
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Figure 15. Space-marching and time-marching solutions for underexpanded Mach 2.0 supersonic jet computed with

Jones-Launder k-E turbulence model.
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(b) Multiblock single cell wedge grid for jet flows containing multiple Mach disks.

Figure 16. Flow configuration and computational grid for underexpanded jet containing one or more Mach disks.
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Figure 17. Density and Mach number contours for underexpanded circular jet containing multiple Mach disks.

Exit Mach number = 1.50; Pe [Po = 3.15; fine grid solution.
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(b) One-half density grid Mach number contours; Interval = 0.25.

Figure 18. Grid study for underexpanded circular jet containing multiple Mach disks. Jet exit Mach number = 1.50;
pe/Po = 3.15.
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(a) Typical density contours of underexpanded elliptic jet in major plane of symmetry.
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(c) Adapted grid longitudinal profile in plane of symmetry containing major axis of initial jet cross section.

Figure 19. Adapted grid geometry for elliptic supersonic jet. Shape aspect ratio = 2.0.
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Figure 20. Mach number contours for underexpanded supersonic jet with elliptic exit cross section. Shape aspect
ratio = 2.0; Exit Mach number = 2.00; NPR = 11.12; pe/Po = 1.445.
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Figure 21. Mach number contours in major and minor planes of symmetry of elliptic jet shape ratio of 2.0; On-design
NPR = 7.82.
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Figure 22. Cross-section shape evolution in streamwise direction of elliptic underexpanded supersonic jet. Shape aspect
ratio = 2.0; Jet exit Mach number = 2.0; NPR = 11.12;Pe/Po = 1.445.
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Figure 23. Cross-section shape evolution in streamwise direction of rectangular underexpanded supersonic jet. Shape

aspect ratio = 2.0; Jet exit Mach number = 2.0; NPR = 11.12; pe[Po = 1.445.
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Figure 24. Cross-section shape evolution in streamwise direction of square underexpanded supersonic jet. Jet exit Mach
number = 2.0; NPR = 11.12; pe[Po = i.445.
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Figure 25. Cross-section shape evolution in streamwise direction of on-design elliptic supersonic jet. Shape aspect

ratio = 2.0; Jet exit Mach number = 2.0; NPR = 7.82.
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(b) Centerline Mach number profile.

Figure 26. Mach number distribution in underexpanded square jet. Exit Mach number = 2.0; NPR = 11.12.
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(b) Centerline Mach number distribution.

Figure 27. Mach number distribution in underexpanded circular jet. Exit Mach number = 2.0, NPR = 11.12.
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(a) Turbulence intensity distribution in plane of symmetry; ut/U e contours.

.12 -

.10

.08

Turbulence

intensity, .06

ut/U e

.04

.02

' I t I I I I I I I i , , , I , , I , , , , I

0 5 10 15 35 40
i I i i i

20 25 30

x/R

(b) Centerline turbulence intensity distribution.

Figure 28. Turbulence intensity distribution in circular jet computed by using single cell wedge grid. Exit Mach
number = 2.0; on-design NPR = 7.82.
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(b) Centerline turbulence intensity distribution.

Figure 29. Turbulence intensity distribution in circular jet computed by using three-dimensional adaptive grids. Exit

Mach number = 2.0; on-design NPR = 7.82 ; medium grid density: j, k = 40.
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Figure 30. Turbulence intensity distribution in circular jet computed by using three-dimensional adaptive grids. Exit
Mach number = 2.0; NPR = 7.82; high density adaptive grid:j, k = 56.
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